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We study the statistical mechanics of a class of problems whose phase space is the set of permutations of an
ensemble of quenched random positions. Specific examples analyzed are the finite-temperature traveling sales-
man problem on several different domains and various problems in one dimension such as the so-called
descent problem. We first motivate our method by analyzing these problems using the annealed approximation.
Then in the limit of a large number of points we develop a formalism to carry out the quenched calculation.
This formalism does not require the replica method, and its predictions are found to agree with Monte Carlo
simulations. In addition our method reproduces an exact mathematical result for the maximum traveling
salesman problem in two dimensions and suggests its generalization to higher dimensions. The general ap-
proach may provide an alternative method to study certain systems with quenched disorder.
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I. INTRODUCTION

The statistical mechanical approach to the study of opti-
mization problems has led to progress in a number of ways.
The approach is based on identifying the cost function,
which needs to be minimized, with the energy of a physical
system whose phase space is equivalent to the free adjustable
parameters in the optimization problem. The zero-
temperature energy of the resulting physical system thus cor-
responds to the optimal solution. This formulation can be
exploited in two ways. First, physically motivated minimiza-
tion techniques such as simulated annealing can be applied to
optimization problems �1�, often leading to near-optimal so-
lutions. Second, the statistical mechanical approach can also
be used to carry out computations of average or typical val-
ues of optimal solutions, where the nonadjustable parameters
�describing the realization of the instance� in the system are
taken to be quenched random variables �2�. The replica and
cavity methods, which are much used in the theory of spin
glasses, have been successfully exploited to study statistical
properties in wide range of optimization problems �2–5�. Of-
ten optimization problems have a phase space which is
equivalent to permutations or partitions of the integers and
these problems are referred to as combinatorial optimization
problems. One of the most famous of these combinatorial
problems is the traveling salesman problem �TSP�. Here the
problem is to find the minimal circuit length to visit N cities
or points where the distance between the points i and j is
given by dij. The order in which the cites are visited is en-
coded in a permutation ���N where �N is the group of
permutations of N objects. For a given permutation,

D��� = �
i

d�i,�i+1
�1�

is the corresponding total distance traveled. When the dij’s
are chosen from some quenched distribution the problem is
referred to as the stochastic TSP. The most natural form of

the TSP is the Euclidean TSP �6� where the cities are points
r1 ,r2 , . . . ,rN, in some connected domain D in Rd and each
point is independently distributed from the others with the
same probability density function pq�r�. The distance be-
tween the points i and j is simply the Euclidean distance on
Rd given by dij = �ri−r j�. It was shown �6� that for N→� the
minimal path DM behaves as

DM

N1−1/d → ��d��
D

ddr�pq�r��1−1/d, �2�

with probability 1. Here ��d� is a constant depending on the
dimension of the space d but independent of pq. The stochas-
tic TSP has also been studied under the random link hypoth-
esis where the dij are all uncorrelated �up to any symmetry
requirement�. Clearly in this random link version the triangle
inequality is not respected. This version has been intensively
studied �7–11�, and its analysis is greatly simplified by the
lack of correlation between the dij which makes the taking of
the disorder average quite straightforward. A, somewhat per-
verse, variant of the TSP is one where one asks for the maxi-
mal tour; this is called the maximum TSP �12� and is, for
obvious reasons, sometimes referred to as the taxicab rip-off.
In the statistical mechanical formulation, if one looks for the
maximal tour, one keeps the same cost function but changes
the sign of the temperature.

In the class of problems we shall study in this paper, N
points �r1 ,r2 . . . ,rN	 are chosen independently in some do-
main D�Rd with probability density pq�r�. Again the dy-
namical phase space for the problem is taken to be all per-
mutations of the order of these points, ���N. The
Hamiltonian for the system is defined to be

H��� = �
i=1

N

V�r�i
− r�i−1

� . �3�

Cyclic boundary conditions r0=rN are imposed. In this con-
text the Euclidean TSP corresponds to the zero-temperature
limit of the case where V�r�= �r�.
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A physical realization of the system is one where the ri
are impurities where the monomers of a polymer loop are
pinned and only one monomer can be pinned per impurity.
The potential V represents effective interaction between
neighboring monomers on the chain. For instance, V�r�
=�r2 /2 corresponds to the Rouse model of a polymer chain
�13�. For instance, in Fig. 1 we represent the system of a
polymer on a two-dimensional substrate where the mono-
mers, shown as solid circles, attach themselves to pinning
sites �shown as crosses�.

The canonical partition function for these problems is
given by the following sum over all permutations:

ZN =
1

N! �
���N

exp�− �H���� . �4�

Since the number of permutations grows as N!, the entropy is
nonextensive and behaves as N ln N, but here we insert a
factor of 1 /N! to absorb it.

To compute the average energy per site it is necessary to
work out the quenched free energy of the system:

FN = −
1

�
ln�ZN� , �5�

where the overbar denotes averaging with respect to the
quenched joint probability density function of the random
sites ri. The energy per site is then evaluated as

� =
1

N

�

��
�FN. �6�

Our method will be shown to be exact in the limit of large
N while keeping the domain D fixed. However, this large-N
scaling is not the one needed to obtain the quantity ��d� in
Eq. �2�. When the probability density pq�r� is flat and V�r� is
an attractive potential, as is the case for the ordinary TSP, the
minimal energy configuration is one where links are always
of the order of the minimal separation between points—that
is to say, O��−1/d� where � is the density of points—and thus
the ground energy per site is of the order

�GS 
 V��−1/d� . �7�

If one uses the TSP potential V�r�=�r� in the above, one
recovers the scaling of Eq. �2�. In these attractive cases the

ground-state energy per site is zero in the thermodynamic
limit and in order to extract an extensive result the energy of
the system must be scaled appropriately with N �3�. If the
potential V is repulsive, as in the maximum TSP, then links
will be typically of the domain size D and if this domain size
is O�1� �in the sense that it does not scale with N�, then the
ground-state energy per site will be O�1� without the need
for any special scaling.

We emphasize that our method is exact in any dimension;
however, many of the examples we give will be in one di-
mension, where many explicit results can be obtained. In one
dimension we remark that any attractive choice of the poten-
tial V corresponds to a choice of cost function for the com-
putational problem of sorting random data elements into in-
creasing order. The performance of local physical Monte
Carlo algorithms has been analyzed in problems with these
cost functions �16�, demonstrating the pitfalls in using such
algorithms to search for the optimum. Indeed tree-based sort-
ing algorithms are much more efficient �15�.

The main potential we shall investigate is

V�r� = �r� , �8�

and, as mentioned previously, this potential is of particular
interest as it arises naturally in the Euclidean TSP as its
ground state at positive temperature is the shortest circuit
visiting each of the points once and only once. We will dis-
cuss this problem in detail in both one and two dimensions
on several domains with different topologies. Some of these
domains are not simply connected, and besides the average
energy observable, which is our main focus, we show how to
compute the statistics of the winding number of the path
around the domain. Of course the solution to the one-
dimensional TSP is obvious; one starts with the leftmost
point and works along to the rightmost, giving an average
ground state energy per site of �GS=0. Using the scaling of
this paper the ground-state energy of the ordinary TSP per
site is �GS=0 in all dimensions, as can be seen from Eq. �2�.
At negative temperature �or where the sign of V is inverted�
the corresponding ground state corresponds to the solution of
the maximum TSP where one requires the maximal distance
taken to complete a circuit visiting all the points once and
only once. The solution here is not quite so obvious but we
shall see that �GS=1/2 is the average ground-state energy per
site. For a uniform distribution of points the interested reader
may verify that this average value of �GS may be achieved by
a greedy algorithm, which starts at the leftmost point, goes to
the rightmost point, returns to the next leftmost point, and so
on. We emphasize, however, that the main point of this paper
is to solve the finite-temperature statistical mechanics of
these models at all temperatures.

We shall also consider the descent problem �14� as a fully
soluble system in which all our equations can be resolved
analytically. This is a one-dimensional system described by
the potential

V�x� = 	�− x� �9�

for x� �0,1�. In fact the original formulation of the descent
model is equivalent to one where xi are chosen to determin-
istically as xi= i /N. However, because of the scale-free na-

FIG. 1. Ring polymer on a two-dimensional substrate where
each monomer �solid circles� is attached to an impurity �crosses�.
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ture of the potential V, all models with an arbitrary continu-
ous distribution of the xi are in fact equivalent. The energy of
the permutation is thus the number of points where x�i

is
greater than the point x�i+1

, the point which follows it on the
polymer ring. The ground state of the system is simply the
permutation in which the x�i

appear in increasing order and
has corresponding energy per site �GS=0.

To further test the validity of our method, we have con-
sidered harmonic potentials V�r�= �r�2 in various dimensions.
In one dimension with domain xi� �0,1�, we have also stud-
ied the potential V�x�=−ln��x�� at positive temperatures
�where the model is defined�.

In all cases studied the analytic predictions were con-
firmed by Monte Carlo simulations and in some cases by
extrapolating the results of exact enumeration for systems of
small size. In addition the behavior of �GS for repulsive po-
tentials V in one dimension is analyzed via a zero-
temperature analysis and the results are discussed in terms of
the corresponding optimal paths. We also examine the maxi-
mum TSP in higher dimensions and show that we recover an
exact mathematical result for the average length of the opti-
mal path in two dimensions. We are able to use our method
to predict the corresponding optimal path length in higher
dimensions. A fascinating aspect of this analysis is that, in
addition to providing the average optimal path length, the
saddle point equations we derive in the thermodynamic limit
seem to suggest the heuristic one should use to search for the
optimal path.

As this paper is rather long and also contains lots of ex-
amples, we conclude this Introduction with a description of
the following sections.

In Sec. II we study the annealed approximation for a gen-
eral interaction potential. The finite-temperature behavior of
several models is then discussed, and the physical mecha-
nism leading to the difference between the annealed and
quenched calculations is highlighted. We find that the an-
nealed approximation is exact for the descent model and ex-
plain why.

In Sec. III the general formalism for the quenched calcu-
lation is developed—this is the core and key idea of the
paper. Various examples are analyzed, for general tempera-
tures, and compared with Monte Carlo simulations.

In Sec. IV we concentrate on the zero-temperature limit of
the quenched calculations and thus make contact with the
corresponding optimization problems. Most of this analysis
is for one-dimensional problems, where analytic results can
be obtained and some classification of the optimal path is
possible in terms of the convexity or concavity of the inter-
action potential V. The maximal TSP is analyzed in general
dimensions and a conjecture for the length of the maximal
path put forward.

In Sec. V we present our conclusions and perspectives for
further studies.

A brief description of our method has appeared in Ref.
�17� and a comment on the technique can be found at http://
jc-cond-mat.bel-labs.com.

II. ANNEALED APPROXIMATION

A. General formalism

Here we shall analyze the statistical mechanics of this
general class of problems in the annealed approximation
which amounts to setting

FN 
 FN
ann = −

1

�
ln�Z̄N� . �10�

This approximation is in general doomed to failure for the
following reason. In the annealed approximation the
quenched variables are no longer quenched and will evolve
dynamically in order to decrease the free energy of the sys-
tem. The configuration of variables which dominates the
thermodynamics will generically be atypical of the initial
quenched distribution and will usually be of measure zero.
For instance, if we consider the one-dimensional TSP at
negative temperature, it is clear that the maximal circuit, av-
eraging over all permutations and positions xi, will be one
where half the xi are at the point x=0 and the other half at
x=1. This will allow a ground-state energy of �GS=1 from
applying the greedy algorithm mentioned in the Introduction.
However, this configuration is of measure zero if the
quenched distribution is uniform on �0,1�. Despite this defi-
ciency, the formalism below will have an important bearing
on our subsequent development of the quenched calculation
and indeed its physical interpretation.

The partition function is averaged over all ri, i=1, . . . ,N,
with periodic boundary conditions—i.e., r0=rN. Upon this
averaging all permutations become equivalent and we obtain

ZN =� �
i=1

N

ddri exp�− ��
i=1

N

V�ri − ri−1� . �11�

The above averaged partition function can be evaluated us-
ing standard transfer operator techniques,

ZN = Tr TN =� ddrTN�r,r� , �12�

where T is the operator:

T�r,r�� = exp�− �V�r − r��� . �13�

In the limit of large N, taking the size of the domain to be
normalized to unity, we find

ZN = �a
N, �14�

where �a is the largest eigenvalue of the operator T �we use
the subscript a to indicate a quantity evaluated in the an-
nealed approximation�. The corresponding right and left
eigenfunctions fR,L

�a� of T obey

fR
�a��r� = �a

−1� ddr� exp�− �V�r − r���fR
�a��r�� , �15�

fL
�a��r� = �a

−1� ddr� exp�− �V�r� − r��fL
�a��r�� . �16�

These eigenfunctions are identical for a symmetric potential,
and we chose the eigenfunctions to be normalized.
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In this eigensystem, �a can have several solutions but that
with the maximum value of �a dominates the partition func-
tion at large N. Moreover, the eigenfunctions fR,L

�a� corre-
sponding to the largest eigenvalue must be positive by the
Perron-Frobenius theorem. The annealed approximation for
the energy per site is consequently obtained as

�a = −
� ln��a�

��
. �17�

The annealed density of points ri on the path at the point r is
given by

pa�r� =
1

N��
j=1

N


�r − r j�� , �18�

where the angular brackets indicate the Gibbs ensemble av-
erage over the annealed points. From the periodic boundary
conditions, all points are equivalent and we have

pa�r� = �
�r − r1�� =
TN�r,r�

Z̄N

= fR
�a��r�fL

�a��r� , �19�

where again we have taken the thermodynamic limit.
In this annealed approximation the probability density of

the points is thus given by Eq. �19�. In general we will find
that

pa�r� � pq�r� �20�

as the variables ri evolve dynamically.
A general expression for the energy at high temperature

can be obtained by expanding the averaged partition function
for small �. The first two terms of this expansion are

�a =� ddr ddr� V�r − r�� + ��3�� ddr ddr� V�r − r��2

− 2� ddr ddr� ddr� V�r − r��V�r� − r��

−� ddr� ddr V2�r − r��� . �21�

A slightly more involved calculation for the quenched case
yields the differing expansion

� =� ddr ddr� V�r − r��

+ ��2� ddr ddr� ddr� V�r − r��V�r� − r��

−� ddr ddr� V2�r − r�� − �� ddr ddr� V�r − r��2� .

�22�

Thus, in general, there will be a difference between the an-
nealed approximation and quenched result at any finite tem-
perature. We will later check our method for the quenched
case by seeing that it reproduces the second form, Eq. �22�.

B. Descent model

We start by considering the annealed approximation for
the descent model. This model is one dimensional, and
throughout this paper we will write r=x to emphasize when
a problem is one dimensional. Differentiating Eq. �16� with
respect to x yields

dfR
a

dx
= �a

−1fR
a�1 − exp�− ��� . �23�

This has the solution

fR
a = C exp��x� , �24�

where �=�a
−1�1−exp�−��� and C is a constant of normaliza-

tion. This solution is then substituted into the original inte-
gral equation to yield �a= �1−exp�−��� /�. Then Eq. �17�
gives the annealed energy to be

�a =
1

�
−

1

exp��� − 1
. �25�

The result, Eq. �25�, is in fact identical to that obtained from
the exact solution to the descent problem, obtained via more
lengthy combinatorial methods �14�. The annealed approxi-
mation thus leads to the exact energy per site for this prob-
lem. This exactness is straightforward to understand. In this
problem there is no length scale in the potential V and only
the order of the points determines the energy; clearly, one
would obtain the same energy from any continuous distribu-
tion of points selected independently with density pq�x� on
�0,1�. We note that the solution for the other �left� eigenvec-
tor fL

a is

fL
a = C� exp�− �x� , �26�

and we obtain pa�x�=1= pq�x�; thus, the annealed distribu-
tion agrees with the quenched one. This is an autoconsis-
tency of the annealed approximation which leads to it being
exact.

C. One-dimensional TSP

In this section we restrict ourselves to one dimension and
consider the unit interval with x� �0,1�. We note that the
potential V is symmetric and thus may write fR

�a�= fL
�a�= f �a�.

We proceed by differentiating Eq. �16� twice to obtain

d2f �a�

dx2 − �2f �a� + 2
�

�a
f �a� = 0, �27�

which has the solution

f �a� = C�exp��x� + A exp�− �x�� , �28�

with

�a
−1 =

�2 − �2

2�
. �29�

Now, �a must be positive, so we have

�2  �2 for � � 0, �30�
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�2 � �2 for �  0. �31�

Substituting the solution, Eq. �28�, back into Eq. �16� we find
the condition

exp�2�� = �� − �

� + �
2

. �32�

We note that a solution of Eq. �32� is �=0. However, the
corresponding solution for f �a� would be of the form f �a��x�
=Ax+B. From above one must also have that df �a� /dx is
continuous and the clear symmetry f �a��x�= f �a��1−x� means
that A=0 in this solution. One can verify that f �a��x�=B is not
a solution. Hence the solution must have ��0. For ��0
one finds that �= i�z where z is the smallest positive solution
of

z = cot��z/2� �33�

and shows no discontinuities as � varies. The annealed en-
ergy per site is then given by

�a =
1

�
−

z2

1 +
1

2
��1 + z2�

. �34�

For �0 we find that �=�z where z is the root of

z = coth�− �z/2� �35�

and here the annealed energy per site is

�a =
1

�
+

z2

1 +
1

2
��1 − z2�

. �36�

In both cases, as �→0 we find that

�a�0� =
1

3
, �37�

which agrees with the exact high-temperature result, Eq.
�21�.

In the positive-temperature case the smallest positive so-
lution z* to Eq. �33� is such that z*� �0,� /�� and thus z*

→0 as �→� and thus �a
1/�→0; this clearly agrees with
the limiting behavior of the corresponding quenched case. In
the case of negative temperature we find that the solution of
Eq. �33� behaves as z*→1 �plus an exponentially decaying
correction�, thus yielding z*
1+1/�→1 which implies �a
→1. This latter result is clearly not the correct result for the
quenched case as the distribution of the xi has evolved to
permit this maximal energy configuration as explained in the
Introduction. Indeed we find from Eq. �28� that pa�x�
= fa

2�x��1 and becomes peaked at the boundaries.

D. TSP on a ring

When the domain of the one-dimensional TSP is a peri-
odic ring rather than the unit interval with boundaries con-
sidered in the last section, the analysis becomes simpler.
Moreover, there is an interesting new observable: the wind-
ing number. For a ring domain, the shortest path is some-

times the other way round the ring, so the potential is

V�x� = ��x� , for �x� 
1
2 ,

1 − �x� , for �x� �
1
2 .
� �38�

Taking proper account of the contributions from discontinui-
ties in the derivative of this potential, the equivalent formula
to Eq. �27� gains a term on the right-hand side:

d2f �a�

dx2 − �2f �a��x� + 2
�

�a
f �a��x� =

2�e−�/2

�
f �a��x + 1/2� ,

�39�

where the eigenfunction is now a periodic function with pe-
riod 1. In this case, in contrast to the situation with bound-
aries, the original integral equation �16� admits a constant
solution fa=1. For positive �, this must correspond to the
largest eigenvalue which is

�a =
2�1 − e−�/2�

�
. �40�

The annealed energy per site is then given by

�a =
1

�
−

1

2�e�/2 − 1�
. �41�

The high-temperature limit of �a now takes the value 1/4.
Notice that the constant solution indicates that the an-

nealed density of points is the same as that of the desired
quenched distribution, so the annealed approximation is ex-
act in this case. This result follows from the symmetry of the
domain and continues to hold for certain other closed do-
mains in higher dimensions. The higher-dimensional cases
will be treated in the later section on quenched models.

A new observable, the winding number, arises for this
domain. The winding number counts the number of times a
particular path goes around the ring and can be written as the
sum of contributions from each step between points in the
same way as the original Hamiltonian:

W��� = �
i=1

N

W�x�i
− x�i−1

� , �42�

where

W�x� = �1 + x , for x  − 1
2 ,

x , for �x� 
1
2 ,

− 1 + x , for x �
1
2 .

� �43�

In fact, since the cyclic boundaries lead to ��x�i
−x�i−1

�=0,
the x part of the contributions can be dropped and the wind-
ing number may be written:

W��� = �
i=1

N

− 	�x�i
− x�i−1

− 1/2� + 	�− x�i
+ x�i−1

− 1/2� .

�44�

In this form it shows some similarity with the potential for
the descent mode. In particular, the asymmetry will make the
right and left eigenfunctions differ.
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We compute the expectation values of the winding num-
ber by taking the Boltzmann weight of the configuration � to
be

exp�− �H��� − �W���� . �45�

The analysis developed above holds for this slightly more
general case, and we will obtain expectations of the winding
number by differentiating the partition function with respect
to � before setting � to zero.

By considering the equations obtained by differentiating
the eigenvalue equation it becomes clear that a solution of
the form

fR
a = C exp��x� �46�

should be sought. Indeed, this form is a solution of the inte-
gral equation provided �=�. As was the case for the descent
model, the left eigenvalue is of the form fL

a =C� exp�−�x�, so
the annealed density becomes constant and this solution is
thus also valid for the quenched problem. The corresponding
eigenvalue is given by

� =
2�

�2 − �2 −
e−�/2

�2 − �2 ��� + ��e�/2 + �� − ��e−�/2� , �47�

which correctly reduces to Eq. �40� when � is set to zero.
As should be expected, the mean value of the winding

number vanishes since there is nothing that prefers winding
in one direction over the other. Even in the low-temperature
limit, there is no symmetry breaking in this one-dimensional
system. On the other hand, the fluctuations provide a nonva-
nishing observable

�W2� =
N

4�2

8e�/2 − 8 − 4� − �2

e�/2 − 1
. �48�

In the high-temperature limit the fluctuations per site become
1/12, and for large negative � the limit is 1 /4.

We have performed Monte Carlo simulations to test this
prediction using the quenched model which we have already
argued has the same value of observables. These results
show good agreement as displayed in Fig. 2.

III. QUENCHED CALCULATION

A. General formalism

The order of the points ri is unimportant for the statistical
mechanics of this problem because the phase space is all
their possible orderings. The relevant disorder is thus clearly
fully determined by the N position vectors ri of the sites.
These positions are encoded in the, unaveraged, density of
points in space,

�q�r� =
1

N
�
i=1

N


�r − ri
�q�� , �49�

where we have used the superscript q above to emphasize
that the points ri

�q� are quenched. We note that by definition
we have pq�r�= �̄q�r�, and in the limit of large N we expect
that

� ddr �q�r�h�r� =� ddr pq�r�h�r� + O�1/�N� �50�

for suitably well-behaved functions h. If ri is the site visited
by the polymer at step i in a system which has ri�D, then
the partition function of the permutation problem can be
written as

ZN =
1

N!
� �

i=1

N

ddri�
r

�N�q�r��!�
r


�N�q�r� − �
i


�r − ri�
�exp�− ��

i

V�ri+1 − ri� . �51�

The above can be derived by considering a discrete version
of the problem where one has n�j� sites at the points r�j�. A
path is specified by the possible sequences r1 ,r2 , . . . ,rN;
however, at the visit to the site r�j� there are n�j� possible
points to choose from and thus any path has a degeneracy
� jn�j�! in order to have the same phase space as the permu-
tation problem. In addition each site r�j� can only be visited
n�j� times, explaining the 
-function constraint above. An-
other way of obtaining the factor in Eq. �51� is to note that
ZN���=CN�N��� where

�N =� �
i=1

N

ddri�
r


�N�q�r� − �
i


�r − ri�
�exp�− ��

i

V�ri+1 − ri� �52�

is the partition function of the system up to a temperature-
independent entropy and degeneracy contribution CN.
Clearly, as defined here, Z�0�=1 which implies Z���
=���� /��0�. We shall see later that, in the limit of large N,
we have

FIG. 2. Expectation value for the fluctuations in winding num-
ber per site, �W2� /N, for the one-dimensional TSP on the ring do-
main as a function of � �dotted line� compared with the Monte
Carlo simulations �crosses�. Negative � corresponds to the maxi-
mum TSP.
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�N�0� = exp�− N� ddr pq�r��ln�pq�r�� − 1	 , �53�

which in the large N limit, via Stirling’s formula, recovers
Eq. �51�.

The partition function �N may be written using a Fourier
representation of the functional constraint:

�N =� d���exp�N� ddr ��r��q�r�ZN, �54�

where each integration over ��x� is up the imaginary axis.
The object ZN is similar to the annealed partition function
considered in the previous section, but with an r-dependent
chemical potential. It is defined as

ZN =� �
i=1

N

ddri exp�− ��
i=1

N

V�ri − ri−1� − �
i=0

N

��ri� .

�55�

For large N we may use relation �50�, neglect the terms
O��N�, and then the partition function in Eq. �54� can be
evaluated by the saddle point method in the limit where N
→� keeping D fixed. The saddle point equation is

pq�r� = −
1

N


 ln ZN


��r�

=
1

N��
i=1

N


�r − ri��
= pa�r� = −


 ln��q�

��r�

, �56�

where the above expectation is in the system with partition
function ZN defined in Eq. �55�.

Physically this approach can be thought of as choosing a
site-dependent chemical potential � which fixes the density
of the annealed calculation to be the same as that of the
quenched one, pq�r�= pa�r�. This idea was used sometime
ago in an approximative sense where low-order moments,
not the whole distribution, were fixed in this way �18,19�.

To proceed, we find an expression for pa�r� using similar
techniques to those employed in the last section. We find

ZN = Tr T N, �57�

where

T�r,r�� = exp�− ��r�/2�exp�− �V�r − r���exp�− ��r��/2� .

�58�

The right and left ground-state eigenfunctions, corresponding
to the maximal eigenvalue �q, obey

fR
�q��r� = �q

−1 exp�− ��r�/2� � ddr� exp�− �V�r − r���

�exp�− ��r��/2�fR
�q��r�� , �59�

fL
�q��r� = �q

−1 exp�− ��r�/2� � ddr� exp�− �V�r� − r��

�exp�− ��r��/2�fL
�q��r�� , �60�

and by a similar calculation to that of the annealed case we
have

pq�r� = pa�r� = −

 ln��q�

��r�

= fR
�q��r�fL

�q��r� . �61�

In the case of a symmetric potential where V�r�=V�−r�, we
have that fR

�q�= fL
�q�= f �q� and thus f �q�=�pq. Note that this

ensures that f �q� is the eigenfunction corresponding to the
maximal eigenvalue as we note that it is positive and then
appeal to the Perron-Frobenius theorem. Substituting the
above into the saddle point equation gives

�pq�r� = �q
−1 exp�−

��r�
2

 � ddr� exp�− �V�r − r���

�exp�−
��r��

2
�pq�r�� . �62�

We can thus write exp�−��r� /2�=�pq�r� /s�q
�r� where s�q

�r�
obeys

s�q
�r� = �q

−1� ddr� exp�− �V�r − r���
pq�r��
s�q

�r��
. �63�

Substituting this back into the action we obtain

ln�ZN�
N

= 2� ddr pq�r�ln�s�q
�r�� + ln��q�

−� ddr pq�r�ln�pq�r�� . �64�

The last term which is independent of � explains the pres-
ence of the combinatorial term in Eq. �51�. However, from
Eq. �63� we see that there is a whole family of solutions
�s�q

�r� ,�q	 which are related by s�q
=a1/2sa�q

for a�0, and in
addition these solutions all have the same action. This appar-
ent zero mode is an artifact introduced by the fact that the
constraint N�ddr �q=�ddr �i
�r−ri� is automatically satis-
fied. Thus we may choose �q=1. In the case of a uniform
distribution on a domain of unit volume this leads to our final
result

� = − 2
�

��
�� ddr ln�s�r���

=� ddr ddr�
V�r − r��exp�− �V�r − r���

s�r�s�r��
, �65�

where s obeys

s�r� =� ddr�
exp�− �V�r − r���

s�r��
�66�

and we have specialized to the usual case when the distribu-
tion of quenched points is uniform. Recall that we have set
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the size of the domain to 1, and some scaling is needed when
this is not the case.

It is possible to check our result via direct comparison
with the high-temperature expansion, Eq. �22�, given at the
end of Sec. II. Equation �66� can be solved perturbatively as
a power series in � by writing

s�r� = 1 + �s1�r� + �2s2�r� + ¯ . �67�

Substituting this expansion into Eq. �66� yields

s1�r� = −� ddr� V�r − r�� +
1

2
� ddr� ddr� V�r� − r�� ,

�68�

s2�r� =
1

2
� ddr� V2�r − r�� +� ddr� s1�r��V�r − r��

−
1

4
� ddr� dz V2�r� − z�

−
1

2
� ddr� ddr� s1�r��V�r� − r�� +

1

2
� ddr� s1�r�� .

�69�

To order �, Eq. �65� then yields

� = − 2� ddr�s1�r� + 2��s2�r� −
s1

2�r�
2

� + O��2� ,

�70�

and substituting Eqs. �69� and �69� in the above we recover
the result, Eq. �22�.

B. Quenched Rouse polymer

Before moving on to consider the TSP, we first analyze a
model with a harmonic potential to demonstrate an analytic
solution of the quenched equations. This system, in the an-
nealed case, is used to model a polymer �13�. To avoid
boundaries, which prevent an analytic solution, we treat the
case where the quenched distribution of points is Gaussian,
pq�r�=e−r2/2 / �2��d/2, and we work in arbitrary dimension d.
The quenched equation for s�r� becomes

s�r� =� ddr�

�2��d/2

e−r�2/2 exp�− ��r − r��2�
s�r��

. �71�

So we search for a Gaussian solution

s�r� = se−�r2/2. �72�

This is satisfied provided

� =
1

2
�1 + 2� − �1 + 4�2� , �73�

s = 2d/4�1 + �1 + 4�2�−d/4. �74�

Inserting these into the saddle point action we obtain the
average energy per site as

� = d�1 −
2�

�1 + 4�2
+

2�

�1 + 4�2�1 + �1 + 4�2�
 . �75�

This has the correct d /2� behavior at large � and the value
�=d at infinite temperature, as can be checked directly by a
Gaussian average. In contrast to the situation for directed
polymers, there is no evidence for a phase transition in this
quenched case.

In Fig. 3 we show the average energy in the two-
dimensional case and compare it with Monte Carlo simula-
tions. The agreement is good, although it should be noted
that at the edges of the plot, for large ���, long runs �tens of
millions of steps� with large N are required to see accurate
agreement.

C. TSP in one and two dimensions

In this section we consider predictions for the TSP in both
one and two dimensions. In view of the nonlinear nature of
Eqs. �65� and �66� we have not found any nontrivial analytic
solutions for the TSP potential. Our primary tool is the itera-
tive numerical solution of Eq. �66� which is stable and can be
solved to any required accuracy. However, for closed sym-
metric domains �we shall consider a one-dimensional ring
and a disk and torus in two dimensions�, a constant solution
exists and some analytic progress is possible. To see this, we
simply require a domain such that that the origin of the in-
tegration in Eq. �66� can be shifted to yield

s2 =� ddr exp�− �V�r�� . �76�

The significance of this observation is that the annealed ap-
proximation is exact for these domains. Indeed this equation
is exactly the annealed eigenvalue equation for a constant
eigenfunction and the relationship between the value of the

FIG. 3. Theoretical prediction for the average energy � for the
two-dimensional quenched polymer model as a function of � �solid
line� compared with the Monte Carlo simulations �solid circles�.
Negative � corresponds to the maximal problem. Error bars based
on 20 realizations of the quenched points are smaller than the sym-
bol sizes. Here the domain D is unbounded but pq is Gaussian and
centered at the origin.
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constant s and the eigenvalue � of the annealed approxima-
tion is simply �=s2. In all cases the normalization is ���
=0�=1. This conclusion is consistent with what is known
from analysis of the independent link version of the TSP.
Evidently, the geometry of independent links has no bound-
aries and the analysis of this problem in the same scaling
limit we consider here also shows that that the annealed ap-
proximation is exact �7�.

Expression �76� allows a general large-� expansion for
these closed domains. Provided the potential is convex, then
in this limit it is apparent that the only contribution to the
integral is from nearby points. When the potential is smooth
we can expand to find ��e−�V�0���V��−d/2, so the energy is
��V�0�+d /2�. This expansion is invalid for the TSP �and
descent model� since the potential is not smooth and the
correct energy is ��d /�. These results indicate that in this
limit the topology of the domain becomes unimportant and
only the dimension is relevant as is indeed observed in all the
examples below. A similar limit for the maximal problem is
dominated by a term corresponding to the largest distance
two points can be apart from each other, which is sensitively
dependent on the topology of the domain.

1. One dimension

For the case of the ring domain, constant s is a solution
and as expected this reproduces the energy obtained via the
annealed calculation �41�.

For the unit interval, we use Eq. �65� to predict the energy
by iteratively solving Eq. �66�.

To test these predictions we have carried out Monte Carlo
simulations of the TSP for system sizes of N=5000 and com-
pared the average energy measured after equilibrating the
system over 500 Monte Carlo sweeps and measuring the
average energy over a subsequent 500 Monte Carlo sweeps.
The disorder average was carried out by averaging the results
over 20 independent realizations of the disorder. The stan-
dard move was taken to be a random transposition of a pair
of points in the permutation, and the acceptance of the move
was chosen with the Metropolis rule. The results for both the
ring and line domains are shown in Fig. 4 compared with the
predictions. We see that for all temperatures the agreement is
excellent.

In the same figure we also show the result for the an-
nealed approximation for the line domain based on Eqs.
�33�–�36�. We see that this provides a lower energy than the
quenched result for positive � and higher for negative �.

The fluctuation in the energy ���− ����2� at high tempera-
ture can be computed using the order-� term in Eq. �22�.
This takes different values for annealed and quenched cases,
but agrees in each case with the respective values computed
using the combinatorial approach of Ref. �16�.

2. Two dimensions

In two dimensions the domains we consider are the
sphere, torus, and unit square or box.

It is convenient to treat a sphere of unit radius, so the
basic equations need a little modification to deal with a do-
main D whose size is not one but V. In effect, all integrals

appearing in the formalism are normalized by the volume
and the final expression for the energy E�� ,V� scales as

E��,1� =
1

V1/dE��/V1/d,V� . �77�

The annealed and quenched equations have a constant so-
lution with

� = s2 =
1

4�
�

S2

d2 r e−�	 =
1

2��2 + 1�
�1 + e−��� , �78�

leading to energy �normalized for a unit size domain�

�a =
2�

�2 + 4�
+

��

2�e���/2 + 1�
. �79�

Note that in the limit �→−�, the energy becomes the half
circumference, corresponding, as is the case for all the closed
domains, to the maximum distance two points can be apart.

For a torus we return to unit-size domain normalization
and find that the annealed and quenched equations yield

� = s2 =
8

�2�
0

�/4 �1 − e„−�/2cos�	�… −
�e„−�/2cos�	�…

2 cos 	
d	

=
2�

�2 −
8

�2�
0

ln�1+�2� �1 + ��/2�cosh v
cosh v

e�−�/2�cosh vdv .

�80�

In the high-temperature limit the integral can be evaluated
analytically, leading to

�a�� = 0� =
1

6
��2 + ln�1 + �2�� = 0.382597858. �81�

At very low temperature we can do a saddle point near v
=0 in the second version of the integral. This gives �

FIG. 4. Theoretical prediction for the average energy � for one-
dimensional TSP on ring and line domains as a function of � �solid
line� compared with the Monte Carlo simulations �solid circles�.
The results of the annealed approximation for the line domain is
also shown. Negative � corresponds to the maximum TSP. Error
bars based on 20 realizations of the quenched points are smaller
than the symbol sizes.
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→2� /�2 and �→2/�. The same result comes more simply
from realizing that only short distances contribute in the
original two-dimensional integral. A similar argument can be
used for large negative � to give �→8e�/�2 /�2 and �
→1/�2−2/ ���.

For the traditional TSP on a unit-square domain, the
quenched result is different from the annealed approximation
and there is little hope of a general analytic solution. Particu-
lar values, such as the high-temperature �=0 value, may be
evaluated �given patience with a 4D integral�. In a later sec-
tion we derive expansions for large ���.

Figure 5 shows the average energy for each of the three
domains. For the sphere this is given by Eq. �79�, for the
torus it is based on numerical integration of Eq. �80�, and for
the box we resort to an iterative solution of the original
quenched equations. The accuracy of this iterative technique
is confirmed by reproducing the results for the other do-
mains. In all these cases we have also performed Monte
Carlo simulations and obtain excellent agreement with the
theory. At large positive � the topology starts to become
unimportant and each domain has energy �2/� as expected
for a two-dimensional TSP.

D. Descent model

In the case of the descent model, V�x� is clearly not an
even function of x, and the general approach presented above
does not apply; however, the value of �q as a functional of �
can be explicitly computed. Despite the fact that we know
the annealed approximation produces the correct result we
shall pursue our method in this case as it is rather instructive
to do so.

Defining R�x�=�0
x exp�−��y� /2�fR

�q��y�dy in Eq. �60� we
find

exp�− ��
dR

dx
= �q

−1��1 − exp�− ���R�x� + exp�− ��R�1�	 .

�82�

Now we define y�x�=�0
xdy exp�−��y�� to obtain

dR

dy
= �q

−1��1 − exp�− ���R�y� + exp�− ��R„y�1�…	 . �83�

This can be solved giving

�exp��� − 1�
R„y�x�…
R„y�1�…

+ 1 = exp��q
−1y�x��1 − exp�− ���	 .

�84�

Now setting x=1 in the above gives

exp��� = exp��q
−1y�1��1 − exp�− ���	 , �85�

which yields

�q =
1 − exp�− ��

�
�

0

1

dy exp�− ��y�� . �86�

We thus find that

−

 ln��q�

��x�

=
exp�− ��x��

�
0

1

dy exp�− ��y��
. �87�

A solution �there is again a family related by a constant fac-
tor giving the same action� to the saddle point equation is

exp�− ��x�/2� = �pq�x� . �88�

This now yields

�FN

N
= − ln�1 − exp�− ��� + ln��� + terms independent of � .

�89�

This is the same result as the annealed calculation of the
precedent section as expected.

E. Other one-dimensional potentials

As an additional numerical verification of our method we
have considered the potentials V�x�=x2 and also V�x�=
−ln��x�� on the line domain D= �0,1�. The latter potential
was only considered at positive temperature as it is ill de-
fined at negative temperature. The comparison of the predic-
tions of our method against results obtained from Monte
Carlo simulations �carried out with the same protocols as for
the TSP case� are shown in Figs. 6 and 7. The agreement is
again excellent.

IV. GENERAL ZERO-TEMPERATURE BEHAVIOR
IN ONE DIMENSION

In some one-dimensional cases we may analyze the low-
temperature behavior of Eq. �66� and extract the low-
temperature energy of the system analytically. We write
s�x�=exp�−�w�x��t�x�, and thus Eq. �66� becomes

FIG. 5. Theoretical prediction for the average energy � for the
two-dimensional TSP on a sphere, box, and torus as a function of �.
Negative � corresponds to the maximum TSP.
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exp�− �w�x��t�x� =� dy
exp�− �V�x − y� + �w�y��

t�y�
.

�90�

We now assume that ln�t�x�� /�→0 as �→� which permits
us to evaluate the integral on the right-hand side of Eq. �90�
via the saddle point method:

exp�− �w�x��t�x�


 exp�− �r�x���
−�

�

d�

�exp�−
��2

2
�V�„x − x*�x�… − w�„x*�x�…�� , �91�

where

r�x� = V„x − x*�x�… − w„x*�x�… = min
y��0,1�

�V�x − y� − w�y�	 ,

�92�

and the point x*�x� is simply the point about which the action
in the saddle point is minimal, the fluctuations being inte-
grated about this point. It is at this point tempting to suggest
a tentative physical interpretation of x*�x� as the optimal
point that the polymer jumps to if its current position is x;
that is to say, if the monomer i is at x, then the optimal
position for monomer i+1 is at x*�x�.

The function w�x� is thus determined by r�x�=w�x�—i.e.,

w�x� = min
y��0,1�

�V�x − y� − w�y�	 . �93�

Intriguing we will see that by effectively guessing some �lo-
cal� heuristics for x*�x� we will be able to obtain some solu-
tions to Eq. �93�. Putting all this together we obtain the equa-
tion for t:

t�x�t„x*�x�… = � 2�

��V�„x − x*�x�… − w�„x*�x�…�
1/2

, �94�

this only being valid if V�(x−x*�x�)−w�(x*�x�)�0 on all but
a set of measure zero and when, again on all but a set of
measure zero, the minimizing point occurs within the domain
�0,1�. To simplify our analysis we shift the domain �0,1� to
the domain �− 1

2 ,− 1
2
�; by symmetry, we now expect that

w�x�=w�−x� and t�x�= t�−x�. The shifted equation for w is
simply

w�x� = min
y��−1/2,1/2�

�V�x − y� − w�y�	 . �95�

The energy is now given by

� 
 2�
−1/2

1/2

dxw �x� − 2
�

��
�

−1/2

1/2

dx ln�t�x�� . �96�

If indeed x*�x� is the point which is the optimal to jump to
from x, we expect a one-to-one correspondence between
x and x*�x� in order to generate a uniform annealed distribu-
tion. If this is indeed the case, then for any function F on
�0,1� we will have

� dx F�x� =� dx F„x*�x�… . �97�

Using Eq. �97� and Eqs. �96� and �94� we find

� 
 2�
−1/2

1/2

dx w�x� −
�

��
�

−1/2

1/2

dx ln�t�x�t„x*�x�…�

= 2�
−1/2

1/2

dx w�x� +
1

2�
. �98�

Thus, given that the conditions stated above all hold, the
correction to the zero-temperature energy at low tempera-
tures takes a remarkably universal form.

FIG. 7. Predicted average energy for potential V�x�=−ln��x�� as
a function of � �solid line� against values measured from Monte
Carlo simulations �solid circles�.

FIG. 6. Predicted average energy for potential V�x�=x2 as a
function of � �solid line� against values measured from Monte
Carlo simulations �solid circles�.
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We first consider the case where V is a purely attractive
potential with a minimum at x=0. Taking the idea that x*�x�
is the optimal jump from the point x we expect x*�x�=x. This
will imply from Eq. �93� that w�x�=V�0� /2. This solution
can be seen to work when plugged back into Eq. �93� when
V��0�=0 and V��0��0. We thus find from Eq. �98� that

� 
 V�0� +
1

2�
. �99�

We now consider the case where the potential is every-
where repulsive. On the interval �− 1

2 , 1
2
� the greedy algo-

rithm described earlier amounts to making the choice x*�x�
=−x. This choice implies that

w�x� = V�2x� − w�x� , �100�

and for the solution to be valid we must have that

− V��2x� − w��− x� = 0. �101�

If w�x�=w�−x�, then we have w��x�=−w��−x� and so the
above implies that w�x�=V�2x� /2. For this solution to be
valid we must have that V��2x�0 and thus it only holds for
concave potentials.

The low-temperature energy is thus given by

� =� dx V�x� +
1

2�
. �102�

The ground-state energy is clearly that given by the greedy
algorithm

�GA =� dx V�x� . �103�

Another heuristic for finding the maximal path in the case
of repulsive potentials is to take a jump size of constant size
�. When there are no minima the best value for � is 1 /2; this
strategy clearly minimizes the energy at each jump subject to
the constraint that it must be possible from any position x.
One simply adds a very small noise � to each jump of 1/2 to
generate the required uniform distribution of monomers on
�0,1�. We call this the half-jump algorithm, and it is clearly
not at all greedy. We thus take x*�x� so that �x−x*�x��=1/2.
When x�0 this implies x*�x�=x−1/2 and hence

w�x� = V�1

2
 − w�x −

1

2
 . �104�

The explicit solution to this equation is w�x�=a�x�+b, where

b = V�1

2
 −

a

2
− b , �105�

and the condition to have a minimum implies that

V��1

2
 − a = 0 �106�

and V��1/2��0. Thus the function V cannot be concave near
x=1/2 and

b =
1

2
�V�1

2
 −

1

2
V��1

2
� . �107�

As expected this solution gives

� = V�1

2
 +

1

2�
, �108�

which is obviously the ground-state energy given by the half-
jump algorithm energy.

A potential where the above solution is possible is V�x�
=−ln��x��. Numerical solution of Eq. �66� at low tempera-
tures converges to the solution found above. The predicted
value of the ground-state energy is �GS=ln�2�; this value is
compatible with the Monte Carlo simulations for this poten-
tial shown in Fig. 7. Clearly the greedy algorithm is a bad
strategy for the potential V�x�=−ln��x��; this is because at the
end it must link points very close to each other situated near
x=1/2, thus giving a very large contribution to the energy at
the end of the algorithm. The greedy algorithm gives an en-
ergy �=−�dx ln�x�=1, which is indeed higher than the
ground state we predict analytically and not compatible with
our Monte Carlo simulations. When V���x���0 everywhere
in �0,1�, Jensen’s inequality tells us that �V�X���V�X� for X
distributed on �0,1�; when this distribution is uniform this
implies that �GA��HA and hence the half-jump algorithm is
the most efficient. In the case where the potential is concave
the greedy algorithm is the most efficient.

We note that the case of the maximum TSP is an interme-
diate case where V��x�=0, and in this case �GA=�HA and the
forms of u�x� in these two cases coincide. As a check of this
asymptotic analysis we have numerically solved Eq. �66� for
the potential V�x�=−�x� at �=30. Shown in Fig. 8 is w*�x�
=−ln�s�x�� /� where s�x� is the numerical solution of Eq.
�66� at �=30. Also shown is the predicted zero-temperature
limit of w*. The agreement improves on increasing � but

FIG. 8. Value of −ln�s�x�� /� obtained by numerically solving
Eq. �66� at �=30 �solid line� for the potential V�x�=−�x�. Also is
shown the zero-temperature prediction for this function �dashed
line�.
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limitations of numerical accuracy are attained if � is taken to
be too large.

The finite-temperature corrections for both the TSP and
maximum TSP are different from those of the cases consid-
ered thus far as V��x�=0 for x�0. At positive temperature it
is clear that w�x�=0, as the saddle point is at x*�x�=x. Here,
because V��x�=0, we do not expand the terms in the expo-
nential of the integral about y=0 but we do carry out the
expansion of the term 1/ t�y�; we thus write

t2�x� 
 �
−1/2

1/2

dx exp�− ��x − y��

=
1

�
�2 − exp�−

�

2
− �x − exp�−

�

2
+ �x� .

�109�

As �→� we have

� dx ln�s�x�� 
 �
0

1/2

dx ln�1 −
1

2
exp�− �x� +

1

2
ln� 2

�




1

2�
�−

�2

6
+ ln2�2�� +

1

2
ln� 2

�
 . �110�

This yields

� 

1

�
−

1

�2��2

6
− ln2�2� �111�

for the TSP as �→�. We have checked that this result agrees
with the asymptotics of our numerical solutions.

The analysis for the maximum TSP is more involved. Dif-
ferentiating Eq. �65� twice we see that the function s�x�
obeys

s��x� = �2s�x� +
2�

s�x�
. �112�

We now make the substitution s�x�=exp���x��t�x� to find

t��x� + 2� sgn�x�t��x� = − 2�
�x�t�0� +
2� exp�− 2��x��

t�x�
.

�113�

Now in the limit �→� we have 2� exp�−2��x��

�x�. For
large � we thus have

t��x� + 2� sgn�x�t��x� = 
�x��− 2�t�0� +
1

t�0� . �114�

The above has solution t�x�=A+B exp�−2��x��, and the jump
conditions at the origin yield the relation

A2 − B2 =
1

2�
. �115�

An extra relation between A and B is found from examining
the integral equation for t at x=0, which in this limit gives

A + B =
1

A
, �116�

and in the limit of large � we find A
B
1/�2 and we find
that the large-� behavior of the energy is

� 
 −
1

2
+

�2

6�2 . �117�

To end our analysis of the low-temperature limit we will
consider the maximum TSP in higher �d� dimensions, spe-
cifically on the hypercube �0,1�d. Consider the generaliza-
tion of the greedy heuristic. Here we start on the outermost
layer of points in the hypercube and we join points on this
surface to those that are diametrically opposed. The proce-
dure is then repeated eroding the hypercube until we arrive at
the center. Shifting the domain to �− 1

2 , 1
2
�d as before, this

entails matching the point x with −x. This generalized heu-
ristic was shown to give the optimal path length for d=2
�20�. The ground-state energy generated by this generalized
greedy heuristic is clearly

�GA = 2d�
�0,1/2�d

dx V�2x� = − 2d+1�
�0,1/2�d

dx �x� .

�118�

This general formula gives �GA=−0.5, −0.765 196, and
−0.960 592 in one, two, and three dimensions, respectively.
The solution w�x�=−x is in fact a solution to Eq. �93� and
thus gives these ground-state energies. This can be easily
verified as we note that the function

h�x� = �y� − �x − y� �119�

is bounded as

h�x� � − �x� �120�

by the triangle inequality. The bound is achieved at y=−x,
confirming that w�x�=−x is indeed a solution. We note that
this solution exists in any domain D �centered at the origin�
satisfying the property that if x�D, then −x�D.

V. CONCLUSIONS

We have discussed the statistical mechanics of models
whose phase space is the set of permutations of N objects
characterized by quenched positions ri. The Hamiltonians are
functions of the neighboring elements in the sequence, and
thus a given sequence can be interpreted as the energy of a
polymer ring or closed random walk which visits all points
in the quenched distribution once. We analyzed the cases
corresponding to several well-studied problems including the
traveling salesman problem, the descent problem, and the
quenched Rouse model.

The annealed approximation was first considered and il-
lustrated for some one-dimensional cases. For the TSP on a
ring and the descent problem this annealed approximation
gives the correct quenched result. For the descent model, this
is because the effective potential between neighboring mono-
mers, when the system is viewed as a polymer with interac-
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tions between consecutive monomers, is scale free and inde-
pendent of the quenched distribution of the random points.
For the TSP on a ring, the reason is less clear, but agrees with
expectations from replica studies of the independent-link ap-
proximation and continues to hold for symmetric closed do-
mains in higher dimensions. However, in general, we expect
the annealed approximation to fail at all but infinite tempera-
ture. This is because the points ri are allowed to evolve dy-
namically to lower the free energy of the system and the
resulting thermodynamic distribution will not be the same as
their original quenched distribution.

We then showed how the quenched calculation could be
carried out and confirmed its predictions for both one- and
two-dimensional TSP examples with Monte Carlo simula-
tions. Physically the method we introduced corresponds to
imposing a fictitious site-dependent chemical potential on the
distribution of a set of dynamical variables ri in the presence
of the original interaction Hamiltonian. This chemical poten-
tial is then chosen to ensure that the annealed distribution of
the positions of these dynamical ri, denoted in this paper by
pa�r�, is the same as the quenched distribution of the
quenched random variables ri

�q� denoted by pq�r�. The
method is exact in the thermodynamic limit �corresponding
to high density where the length of the interval is held con-
stant� for any quenched distribution pq�r� and interaction po-
tential V�r�. One of the most intriguing observations made
here is that in the annealed approximation we are led to
consider a linear eigenvalue problem to solve the thermody-
namics as we use a transfer matrix approach; however, in the
quenched calculation we are led to consider a nonlinear in-
tegral equation. Although we managed to avoid the some-
times rather opaque replica method in our treatment, it would
be interesting to see if the appearance of the nonlinear eigen-
value equation could be interpreted or rederived within the

replica formalism. The results of our calculations were then
confirmed by comparing them with Monte Carlo simulations
in a variety of models. In the cases we have considered so far
we have seen no evidence for any phase transition on low-
ering the system’s temperature. It is possible, however, that
in higher dimensions and with certain interaction potentials
V a phase transition does occur. We recall that a directed
polymer in dimensions greater than 2 exhibits a finite-
temperature phase transition �21�.

Particular attention was paid to the zero-temperature limit
where Eq. �93� needs to be solved. A number of solutions
were found which, although we did not prove uniqueness,
are compatible with our numerical simulations and also a
rigorous result for the maximum TSP in two dimensions. The
solution of Eq. �93� was carried out by trying out different
heuristics to construct the optimal path; it is possible that in
more complex situations the method used here could serve as
a useful indicator for such constructions.

Finally the idea of treating quenched variables as effec-
tively annealed variables and then adjusting their Boltzmann
weight in order to recover self-consistently the original
quenched distribution may prove useful, either as an exact or
approximate method in other problems involving quenched
disorder. Indeed Morita’s �18� pioneering work used this idea
in an approximate context; here, we have shown that the
procedure can be carried out exactly for this type of permu-
tation based combinatorial optimization problem, as is also
the case for some one-dimensional spin models �19�.
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